کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6860466 1438742 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An optimized nearest prototype classifier for power plant fault diagnosis using hybrid particle swarm optimization algorithm
ترجمه فارسی عنوان
بهینه سازی نزدیکترین طبقه بندی نمونه اولیه برای تشخیص خطا در نیروگاه با استفاده از الگوریتم بهینه سازی ذرات هیبرید
کلمات کلیدی
نزدیکترین طبقه بندی کننده نمونه اولیه، بهینه سازی ذرات ذرات، رویکرد سازنده، نیروگاه، تشخیص گسل،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Correct and rapid fault diagnosis is of great importance for the safe and reliable operation of a large-scale power plant. It is a difficult task, however, due to the structural complexity of a power plant, which needs to deal with hundreds of variables simultaneously in case of fault occurrence. A novel nearest prototype classifier is proposed in this paper to diagnose faults in a power plant. A constructive approach is employed to automatically determine the most appropriate number of prototypes per class, while a hybrid particle swarm optimization (HGLPSO) algorithm is used to optimize the position of the prototypes. The aim is to generate an automatic process for obtaining the number and position of prototypes in the nearest prototype classifier with high classification accuracy and low size. The effectiveness of the HGLPSO classifier is evaluated on eight real world classification problems. Finally, the classifier is applied to diagnose faults of a high-pressure feedwater heater system of a 600-MW coal-fired power unit. The obtained results demonstrate the validity of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 58, June 2014, Pages 257-265
نویسندگان
, , ,