کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863550 | 1439515 | 2018 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Period-aware content attention RNNs for time series forecasting with missing values
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recurrent neural networks (RNNs) recently received considerable attention for sequence modeling and time series analysis. Many time series contain periods, e.g. seasonal changes in weather time series or electricity usage at day and night time. Here, we first analyze the behavior of RNNs with an attention mechanism with respect to periods in time series and illustrate that they fail to model periods. Then, we propose an extended attention model for sequence-to-sequence RNNs designed to capture periods in time series with or without missing values. This extended attention model can be deployed on top of any RNN, and is shown to yield state-of-the-art performance for time series forecasting on several univariate and multivariate time series.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 177-186
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 177-186
نویسندگان
Yagmur Gizem Cinar, Hamid Mirisaee, Parantapa Goswami, Eric Gaussier, Ali Aït-Bachir,