کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863603 1439516 2018 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks
چکیده انگلیسی
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Such an image can be generated at pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a useful application in digital entertainment. In this paper, we investigate the sketch-to-image synthesis problem by using conditional generative adversarial networks (cGAN). We propose a model called auto-painter which can automatically generate compatible colors given a sketch. Wasserstein distance is used in training cGAN to overcome model collapse and enable the model converged much better. The new model is not only capable of painting hand-draw sketch with compatible colors, but also allowing users to indicate preferred colors. Experimental results on different sketch datasets show that the auto-painter performs better than other existing image-to-image methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 311, 15 October 2018, Pages 78-87
نویسندگان
, , , ,