کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863691 1439519 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pruning strategies for nearest neighbor competence preservation learners
ترجمه فارسی عنوان
استراتژی های هرس کردن برای یادگیرندگان حفظ صلاحیت نزدیکترین همسایگان
کلمات کلیدی
طبقه بندی، نزدیک ترین قاعده همسایه، زیر مجموعه آموزش ثابت، بیش از حد، تخمین خطای بدبینانه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In order to alleviate both the spatial and temporal cost of the nearest neighbor classification rule, competence preservation techniques aim at substituting the training set with a selected subset, known as consistent subset. In order to improve generalization and to prevent induction of overly complex models, in this study the application of the Pessimistic Error Estimate (PEE) principle in the context of the nearest neighbor rule is investigated. Generalization is estimated as a trade-off between training set accuracy and model complexity. As major results, it is shown that PEE-like selection strategies guarantee to preserve the accuracy of the consistent subset with a far larger reduction factor and, moreover, that sensible generalization improvements can be obtained by using a reduced subset. Moreover, comparison with state-of-the-art hybrid prototype selection methods highlight that the here introduced FCNN-PAC strategy is able to obtain a model of size comparable to that obtained by the best prototype selection methods, with far smaller time requirements, corresponding to four orders of magnitude on medium-sized datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 308, 25 September 2018, Pages 8-20
نویسندگان
, ,