کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6864144 1439535 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machinery health indicator construction based on convolutional neural networks considering trend burr
ترجمه فارسی عنوان
ساختار نشانگر شاخص سلامت ماشین بر اساس شبکه های عصبی کانولوشن با توجه به روند مرطوب
کلمات کلیدی
شاخص سلامت ماشین، شبکه عصبی متقاطع، تصحیح منطقه دورتر، یادگیری عمیق، مرطوب کننده روند،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In the study of data-driven prognostic methods of machinery, much attention has been paid to constructing health indicators (HIs). Most of the existing HIs, however, are manually constructed for a specific degradation process and need the prior knowledge of experts. Additionally, for the existing HIs, there are usually some outlier regions deviating to an expected degradation trend and reducing the performance of HIs. We refer to this phenomenon as trend burr. To deal with these problems, this paper proposes a convolutional neural network based HI construction method considering trend burr. The proposed method first learns features through convolution and pooling operations, and then these learned features are constructed into a HI through a nonlinear mapping operation. Furthermore, an outlier region correction technique is applied to detect and remove outlier regions existing in the HIs. Unlike traditional methods in which HIs are manually constructed, the proposed method aims to automatically construct HIs. Moreover, the outlier region correction technique enables the constructed HIs to be more effective. The effectiveness of the proposed method is verified using a bearing dataset. Through comparing with commonly used HI construction methods, it is demonstrated that the proposed method achieves better results in terms of trendability, monotonicity and scale similarity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 292, 31 May 2018, Pages 142-150
نویسندگان
, , , , ,