کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864882 | 1439552 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust data representation using locally linear embedding guided PCA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Locally Linear Embedding (LLE) is widely used for embedding data on a nonlinear manifold. It aims to preserve the local neighborhood structure on the data manifold. Our work begins with a new observation that LLE has a natural robustness property. Motivated by this observation, we propose to integrate LLE and PCA into a LLE guided PCA model (LLE-PCA) that incorporates both global structure and local neighborhood structure simultaneously while performs robustly to outliers. LLE-PCA has a compact closed-form solution and can be efficiently computed. Extensive experiments on five datasets show promising results on data reconstruction and improvement on data clustering and semi-supervised learning tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 523-532
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 523-532
نویسندگان
Bo Jiang, Chris Ding, Bin Luo,