کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864886 | 1439552 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A clustering fusion technique for MR brain tissue segmentation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In recent decades, a large number of segmentation methods have been introduced and applied to magnetic resonance (MR) brain image analysis to measure and visualize the anatomical structures of interest. In this paper, an efficient fully-automatic brain tissue segmentation algorithm based on a clustering fusion technique is presented. In the training phase of this algorithm, the pixel intensity value is scaled to enhance the contrast of the image. The brain image pixels that have similar intensity are then grouped into objects using a superpixel algorithm. Further, three clustering techniques are utilized to segment each object. For each clustering technique, a neural network (NN) model is fed with features extracted from the image objects and is trained using the labels produced by that clustering technique. In the testing phase, pre-processing step includes scaling and resizing the brain image are applied then the superpixel algorithm partitions the image into multiple objects (similar to the training phase). The three trained neural network models are then used to predict the respective class of each object and the obtained classes are combined using majority voting. The efficiency of the proposed method is demonstrated on various MR brain images and compared with the three base clustering techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 546-559
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 546-559
نویسندگان
Hayat Al-Dmour, Ahmed Al-Ani,