کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864887 | 1439552 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Joint Bayesian guided metric learning for end-to-end face verification
ترجمه فارسی عنوان
یادگیری متریک هدایت مشترک برای تایید چهره به پایان رسید
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تأیید صحت، شبکه عصبی متقاطع، مدل مشترک بیزی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this work, we address the problem of face verification, namely determining whether a pair of face images belongs to the same or different subjects. Previous works often consider solving the problem of face verification in two steps: feature extraction and face recognition, resulting in a fragmented procedure. We argue that these techniques, although working well, fail to explicitly exploit a full end-to-end framework for face verification, which has received much attention and achieved significant improvements recently. In this paper, we propose a novel Joint Bayesian guided metric learning technique for dealing with the face verification task, which well integrates the above two steps of face verification into an end-to-end convolutional neural network (CNN) architecture. In the training stage, an initial neural network, which has the similar architecture with GoogLeNet CNN model, is firstly pre-trained by optimizing classification-based objective functions on the publicly available CASIA WebFace database. Based on constructed face pairs dataset from CASIA WebFace and LFW datasets, we then fine-tune the whole network parameters under the guide of the learned knowledge, which is obtained from the highly successful Joint Bayesian model. This guided learning procedure, which can also be seen as a metric learning technique, can further update network parameters for discriminating face pairs. In the testing process, the outputs by this unified network are discriminated with a threshold value to produce the ultimate prediction for the face verification task. Comprehensive evaluations over the LFW dataset well demonstrate the encouraging face verification performance of our proposed framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 560-567
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 560-567
نویسندگان
Di Chen, Chunyan Xu, Jian Yang, Jianjun Qian, Yuhui Zheng, Linlin Shen,