کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864899 | 1439552 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A clustering algorithm using skewness-based boundary detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Clustering analysis has been applied in all aspects of data mining. Density-based and grid-based clustering algorithms are used to form clusters from the core points or dense grids to extend to the boundary of the clusters. However, deficiencies are still existed. To find out the right boundary and improve the precision of the cluster, this paper has proposed a new clustering algorithm (named C-USB) based on the skew characteristic of the data distribution in the cluster margin region. The boundary degree calculated by skew degree and the local density are used to distinguish whether a data is an internal point or non-internal point. And the connected matrix is constructed by removing the neighbor relationships of non-internal points from the relationships of all points, then the clusters can be formed by searching from the connected matrix towards internal of the clusters. Experimental results on synthetic and real data sets show that the C-USB has higher accuracy than that of similar algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 618-626
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 618-626
نویسندگان
Xiangli Li, Qiong Han, Baozhi Qiu,