کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864902 | 1439552 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A collaborative-competitive representation based classifier model
ترجمه فارسی عنوان
یک مدل طبقه بندی مبتنی بر نمایندگی رقابتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی، نمایندگی همکاری، نمایندگی رقابتی همکاری
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Collaborative representation based classifier (CRC) model has been widely applied in pattern recognition and machine learning. The mechanism of CRC model mainly includes two steps: first, using the training samples across all classes to collaboratively represent the test sample; second, assigning the test sample to the class with the minimal residual. Essentially, the first step exploits the collaborative ability of all training sample to represent the test sample, and the second step exploits the competitive ability of the training samples in each class to represent the test sample. However, traditional CRC model views the first step and second step as two independent procedures and ignores their relationships. To overcome this shortage, in this paper, we propose a novel collaborative-competitive representation based classifier (CCRC) model, which incorporates a regularization constraint term into the objective function of CRC. Through theoretical analysis, we find that minimizing this constraint term is equivalent to the nearest-subspace classifier (NSC) model. Hence, CCRC can be viewed as an integration of the CRC and NSC models to compute the representation. Extensive experiments results confirm the effectiveness of our proposed CCRC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 627-635
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 627-635
نویسندگان
Haoliang Yuan, Xuecong Li, Fangyuan Xu, Yifei Wang, Loi Lei Lai, Yuan Yan Tang,