کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865087 | 1439554 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Facial landmark localization by enhanced convolutional neural network
ترجمه فارسی عنوان
محلی سازی علامت گذاری صورت با استفاده از شبکه عصبی پیچیده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص چهره، اصلاح چهره، محلی سازی نقطه عطفی، شبکه عصبی متقاطع، یادگیری عمیق،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Facial landmark localization is important to many facial recognition and analysis tasks, such as face attributes analysis, head pose estimation, 3D face modeling, and facial expression analysis. In this paper, we propose a new approach to localizing landmarks in facial image by deep convolutional neural network (DCNN). We make two enhancements on the CNN to adapt it to the feature localization task as follows. First, we replace the commonly used max pooling by depth-wise convolution to obtain better localization performance. Second, we define a response map for each facial points as a 2D probability map indicating the presence likelihood, and train our model with a KL divergence loss. To obtain robust localization results, our approach first takes the expectations of the response maps of enhanced CNN and then applies auto-encoder model to the global shape vector, which is effective to rectify the outlier points by the prior global landmark configurations. The proposed ECNN method achieves 5.32% mean error on the experiments on the 300-W dataset, which is comparable to the state-of-the-art performance on this standard benchmark, showing the effectiveness of our methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 222-229
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 222-229
نویسندگان
Weihong Deng, Yuke Fang, Zhenqi Xu, Jiani Hu,