کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
6865184 1439554 2018 7 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature selection under regularized orthogonal least square regression with optimal scaling
ترجمه فارسی عنوان
انتخاب ویژگی تحت رگرسیون حداقل مربعات منظم با مقیاس مطلوب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Due to lack of scale change in orthogonal least square regression (OLSR), the scaling term is introduced to OLSR to build up a novel orthogonal least square regression with optimal scaling (OLSR-OS) problem in this paper. In addition, the proposed OLSR-OS problem is proven to be numerically better than the OLSR problem. In order to select relevant features under the proposed OLSR-OS problem, ℓ2, 1-norm regularization is further introduced, such that row-sparse projection is achieved. Accordingly, a novel parameterized expansion balanced feature selection (PEB-FS) method is derived based on an extension balanced counterpart. Moreover, not only the convergence of the proposed PEB-FS method is provided but the optimal scaling can be automatically achieved as well. Consequently, the effectiveness and the superiority of the proposed PEB-FS method are verified both theoretically and experimentally.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 547-553
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت