کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865196 1439554 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast algorithm for nonsmooth penalized clustering
ترجمه فارسی عنوان
یک الگوریتم سریع برای خوشه بندی مجازات نشده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
As a novel framework of clustering analysis, penalized clustering is able to learn the number of clusters automatically, and therefore has aroused widespread interest recently. To address the computational difficulties arising from the nonsmoothness of the penalty, a simple iterative algorithm based on smoothing trust region (STR) can be used. However, since STR only needs first-order information of the model, it might exhibit slow convergence rate sometimes. To accelerate STR and further improve the efficiency of penalized clustering, we propose a nonmonotone smoothing trust region (NSTR) algorithm, in which nonmonotone technique and the Barzilai and Borwein (BB) method are utilized together. We also prove that the new algorithm is globally convergent and estimate its worst case computational complexity. Experimental results on both simulated and real-life data sets validate the effectiveness and efficiency of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 583-592
نویسندگان
, , ,