کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865208 | 1439554 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The convergence of linear classifiers on large sparse data
ترجمه فارسی عنوان
همگرایی طبقه بندی های خطی در داده های پراکنده بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کمبود اطلاعات، طبقه بندی، توصیه ها، 00-01، 99-00،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Large sparse datasets are very common in product recommendation applications. For the scalability reason, linear classifiers are preferred in classification tasks on such datasets. Our previous work Li et al. (2016) has studied how sparsity affects naive Bayes classification under typical data missing mechanisms. In this paper, we greatly expand our previous work by including all linear classifiers, and explore practical strategies to improve accuracy of large sparse data classification. Using real-world and synthetic experiments, we observe different learning curve behaviors under different missing mechanisms. We also study the theoretic reasons for all our observations. Our studies provide a practical guideline to determine if or when obtaining more data and/or obtaining missing values in the data is worthwhile or not. This can be very valuable in the recommendation system applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 622-633
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 622-633
نویسندگان
Xiang Li, Huaimin Wang, Bin Gu, Charles X. Ling,