کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865230 | 1439555 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels
ترجمه فارسی عنوان
اجتناب از موانع درک عمق تقویت عمیق برای کشتی های دریایی بدون سرنشین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یادگیری عمیق، تقویت یادگیری، اجتناب از موانع، دینامیک غیر خطی، شناور دریایی بدون سرنشین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This research is concerned with the problem of obstacle avoidance for the underactuated unmanned marine vessel under unknown environmental disturbance. A concise deep reinforcement learning obstacle avoidance (CDRLOA) algorithm is proposed with the powerful deep Q-networks architecture to overcome the usability issue caused by the complicated control law in the traditional analytic approach. Furthermore, a comprehensive reward function is specifically designed for obstacle avoidance, target approaching, speed modification, and attitude correction. Compared to the analytic methods, the proposed algorithm based on reinforcement learning shows notable advantages in utility and extendibility. With the same CDRLOA system, the targets and the constraints are highly customizable for various of special requirements. Extensive experiments conducted have demonstrated the effectiveness and conciseness of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 63-73
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 63-73
نویسندگان
Yin Cheng, Weidong Zhang,