کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865259 | 1439555 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MvSSIM: A quality assessment index for hyperspectral images
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Quality assessment indexes play a fundamental role in the analysis of hyperspectral image (HSI) cubes. To assess the quality of an HSI cube, the structural similarity (SSIM) index has been widely applied in a band-by-band manner, as SSIM was originally designed for 2D images, and then the mean SSIM (MeanSSIM) index over all bands is adopted. MeanSSIM fails to accommodate the spectral structure which is a unique characteristic of HSI. Hence in this paper, we propose a new and simple multivariate SSIM (MvSSIM) index for HSI, by treating the pixel spectrum as a multivariate random vector. MvSSIM maintains SSIM's ability to assess the spatial structural similarity via correlation between two images of the same band; and adds an ability to assess the spectral structural similarity via covariance among different bands. MvSSIM is well founded on multivariate statistics and can be easily implemented through simple sample statistics involving mean vectors, covariance matrices and cross-covariance matrices. Experiments show that MvSSIM is a proper quality assessment index for distorted HSIs with different kinds of degradations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 250-257
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 250-257
نویسندگان
Rui Zhu, Fei Zhou, Jing-Hao Xue,