کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865504 679032 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast alternating time-splitting approach for learning partial differential equations
ترجمه فارسی عنوان
یک روش سریع تقسیم زمانی برای یادگیری معادلات دیفرانسیل با مشتقات جزئی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Learning-based partial differential equations (PDEs), which combine fundamental differential invariants into a nonlinear regressor, have been successfully applied to several computer vision and image processing problems. However, the gradient descent method (GDM) for solving the linear combination coefficients among differential invariants is time-consuming. Moreover, when the regularization or constraints on the coefficients become more complex, it is troublesome or even impossible to deduce the gradients. In this paper, we propose a new algorithm, called fast alternating time-splitting approach (FATSA), to solve the linear combination coefficients. By minimizing the difference between the expected output and the actual output of PDEs at each time step, FATSA can solve the linear combination coefficients much faster than GDM. More complex regularization or constraints can also be easily incorporated. Extensive experiments demonstrate that our proposed FATSA outperform GDM in both speed and quality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 185, 12 April 2016, Pages 171-182
نویسندگان
, , ,