کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865918 | 678089 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Simplified adaptive neural control of strict-feedback nonlinear systems
ترجمه فارسی عنوان
کنترل عصبی تطبیقی ساده سیستم های غیر خطی دقیق بازخورد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کنترل انعطاف پذیر، پشت پا زدن، شبکه عصبی، تقریب تابع، دقیق بازخورد، سیستم غیرخطی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper presents a simplified adaptive backstepping neural network control (ABNNC) strategy for a general class of uncertain strict-feedback nonlinear systems. In the backstepping design, all unknown functions at intermediate steps are passed down such that only a single neural network is needed to approximate a lumped uncertainty at the last step. The closed-loop system achieves practical asymptotic stability in the sense that all involved signals are bounded and the tracking error converges to a small neighborhood of zero. The contribution of this study is that the complexity growing problem of the traditional ABNNC design is substantially eliminated for a general class of uncertain strict-feedback nonlinear systems, where the constraints of control parameters that guarantee closed-loop stability is clearly demonstrated. An illustrative example has verified effectiveness of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 251-256
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 251-256
نویسندگان
Yongping Pan, Yiqi Liu, Haoyong Yu,