کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866099 | 679096 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The probability density function based neuro-fuzzy model and its application in batch processes
ترجمه فارسی عنوان
تابع چگالی احتمال مبتنی بر مدل عصبی-فازی و کاربرد آن در فرایندهای دسته ای است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فرآیند دسته ای، تابع چگالی احتمال، مدل فازی نوری، خطای مدل سازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Motivated by the concept of probability density function (PDF) control, a new probability density function (PDF) based neuro-fuzzy model for batch processes is proposed in this paper. The probability density function (PDF) of modeling error is introduced as a criterion to measure the performance of the neuro-fuzzy model of batch processes. More specifically, the neuro-fuzzy model parameter updating approach is transformed into the shape control of the probability density function (PDF) of the modeling error. That is to say, the PDF shape control idea is used to tune neuro-fuzzy model parameters so that the modeling error PDF is controlled to follow a targeted PDF, which is Gaussian or uniform distribution. As a result, the mean square error and the distribution of modeling error are both considered. Moreover, it alternatively uses the method of minimum-entropy to acquire the parameters of the neuro-fuzzy model if the targeted probability density function (PDF) is unknown. An example is applied to illustrate the applicability of the proposed method and the simulation results show that the proposed approach is more effective.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 148, 19 January 2015, Pages 216-221
Journal: Neurocomputing - Volume 148, 19 January 2015, Pages 216-221
نویسندگان
Li Jia, Kai Yuan,