کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866991 | 679667 | 2012 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Human activity recognition from accelerometer data (e.g., obtained by smart phones) is gathering a great deal of attention since it can be used for various purposes such as remote health-care. However, since collecting labeled data is bothersome for new users, it is desirable to utilize data obtained from existing users. In this paper, we formulate this adaptation problem as learning under covariate shift, and propose a computationally efficient probabilistic classification method based on adaptive importance sampling. The usefulness of the proposed method is demonstrated in real-world human activity recognition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 93-101
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 93-101
نویسندگان
Hirotaka Hachiya, Masashi Sugiyama, Naonori Ueda,