کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6868942 681490 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian crossover designs for generalized linear models
ترجمه فارسی عنوان
طرح های متقاطع بیزی برای مدل های خطی تعمیم یافته
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
This article discusses optimal Bayesian crossover designs for generalized linear models. Crossover trials with t treatments and p periods, for t<=p, are considered. The designs proposed in this paper minimize the log determinant of the variance of the estimated treatment effects over all possible allocation of the n subjects to the treatment sequences. It is assumed that the p observations from each subject are mutually correlated while the observations from different subjects are uncorrelated. Since main interest is in estimating the treatment effects, the subject effect is assumed to be nuisance, and generalized estimating equations are used to estimate the marginal means. To address the issue of parameter dependence a Bayesian approach is employed. Prior distributions are assumed on the model parameters which are then incorporated into the DA-optimal design criterion by integrating it over the prior distribution. Three case studies, one with binary outcomes in a 4×4 crossover trial, second one based on count data for a 2×2 trial and a third one with Gamma responses in a 3×2 crossover trial are used to illustrate the proposed method. The effect of the choice of prior distributions on the designs is also studied. A general equivalence theorem is stated to verify the optimality of designs obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 104, December 2016, Pages 35-50
نویسندگان
, ,