کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869993 681132 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian estimation of smoothly mixing time-varying parameter GARCH models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bayesian estimation of smoothly mixing time-varying parameter GARCH models
چکیده انگلیسی
Smoothly time-varying (TV) GARCH models via an asymmetric logistic function mechanism are proposed, which are incorporated into the conditional volatility equation for capturing smooth structural breaks in the volatility of financial time series. The proposed models allow smooth transitions of varying “speed” between multiple, persistent regimes. A Bayesian computational method is employed to identify the locations of smooth structural transitions, and for estimation and inference, simultaneously accounting for heteroskedasticity. An informative prior is proposed to help ensure identification and allow accurate inference. The proposed methods are illustrated using simulated data, and an empirical study provides evidence for significant improvements in fit for the proposed smooth asymmetric time-varying volatility TV-GARCH models in two international stock market return series. A forecast study shows the proposed models significantly add to forecast accuracy for both volatility and Value-at-Risk.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 76, August 2014, Pages 194-209
نویسندگان
, , ,