کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6870508 | 681394 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
LOL selection in high dimension
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A selection procedure with no optimization step called LOLA, for Learning Out of Leaders with Adaptation is proposed. LOLA is an auto-driven algorithm with two thresholding steps. The consistency of the LOL procedure (the non adaptive version of LOLA) is proved under sparsity conditions and simulations are conducted to illustrate the practical good performances of LOLA. The behavior of the algorithm is studied when instrumental variables are artificially added without a priori significant connection to the model. Finally, the problem of empirically verifying the conditional convergence hypothesis used in economics concerning the growth rate is studied. To avoid unnecessary discussion about the choice and the pertinence of instrumental variables, the model is embedded in a very high dimensional setting. Using the LOLA algorithm, a solution for modeling the link between the growth rate and the initial level of the gross domestic product is provided and the convergence hypothesis is empirically proved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 71, March 2014, Pages 743-757
Journal: Computational Statistics & Data Analysis - Volume 71, March 2014, Pages 743-757
نویسندگان
M. Mougeot, D. Picard, K. Tribouley,