کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6879927 | 1443294 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compressed sensing based loss tomography using weighted â1 minimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Network tomography allows the measurements of end-to-end to infer network internal links characteristics such as packet loss rates and delay. In this paper, we focus on the problem of estimating links loss rates, especially locating the congested links in network. Applying concepts of compressed sensing and Maximum A-Posteriori (MAP) estimation, we propose a new loss tomography scheme. Contrary to existing works that use â1 minimization, the proposed scheme adopts weighted â1 minimization as the implementation of compressed sensing, whose weights can be set wisely in order to improve tomography result. We exploit the temporal correlations of link losses and determine weights using the links prior congestion probabilities. The probabilities can be uniquely identified from multiple measurements by solving boolean algebra equations. We conduct a simulation performance analysis of loss tomography, demonstrating that higher estimation accuracy can be obtained through the proposed scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Communications - Volume 127, September 2018, Pages 122-130
Journal: Computer Communications - Volume 127, September 2018, Pages 122-130
نویسندگان
XiaoBo Fan, Xingming Li, JianKang Zhang,