کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6879978 | 1443298 | 2018 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
OLCPM: An online framework for detecting overlapping communities in dynamic social networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
Community structure is one of the most prominent features of complex networks. Community structure detection is of great importance to provide insights into the network structure and functionalities. Most proposals focus on static networks. However, finding communities in a dynamic network is even more challenging, especially when communities overlap with each other. In this article, we present an online algorithm, called OLCPM, based on clique percolation and label propagation methods. OLCPM can detect overlapping communities and works on temporal networks with a fine granularity. By locally updating the community structure, OLCPM delivers significant improvement in running time compared with previous clique percolation techniques. The experimental results on both synthetic and real-world networks illustrate the effectiveness of the method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Communications - Volume 123, June 2018, Pages 36-51
Journal: Computer Communications - Volume 123, June 2018, Pages 36-51
نویسندگان
Souâad Boudebza, Rémy Cazabet, Faiçal Azouaou, Omar Nouali,