کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6882610 | 1443877 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive resource allocation with traffic peak duration prediction and admission control for cognitive Wi-Fi networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Cognitive radio network (CRN) architecture can be efficiently utilized to support different QoS requirements under variable traffic and channel conditions. Generally, deterministic radio resource allocation algorithms could significantly increase the channel utilization as well as the network QoS. In this paper, we propose an advanced cognitive network resource allocation algorithm for IEEE 802.11 cognitive Wi-Fi networks. By making use of the status of the transmission channels and the traffic conditions, the proposed algorithm effectively allocates secondary radio resources to improve the overall radio resource utilization and the QoS of the CSMA/CA-based networks. To improve the accuracy and efficiency of the proposed algorithm, a Markov chain model based technique that estimates the achievable network throughput is employed. Furthermore, an autoregressive moving average (ARMA) based model is used to predict the traffic peaks when allocating the channels. OMNeT++ based simulation models are then developed to analyze the performance of the proposed algorithm. It is shown that our predictive resource allocation technique offers higher throughput and QoS compared to existing resource allocation techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Networks - Volume 142, 4 September 2018, Pages 240-252
Journal: Computer Networks - Volume 142, 4 September 2018, Pages 240-252
نویسندگان
Samoda Gamage, Jamil Y. Khan, Duy T. Ngo,