کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6885027 | 696282 | 2016 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MuDi-Stream: A multi density clustering algorithm for evolving data stream
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Density-based method has emerged as a worthwhile class for clustering data streams. Recently, a number of density-based algorithms have been developed for clustering data streams. However, existing density-based data stream clustering algorithms are not without problem. There is a dramatic decrease in the quality of clustering when there is a range in density of data. In this paper, a new method, called the MuDi-Stream, is developed. It is an online-offline algorithm with four main components. In the online phase, it keeps summary information about evolving multi-density data stream in the form of core mini-clusters. The offline phase generates the final clusters using an adapted density-based clustering algorithm. The grid-based method is used as an outlier buffer to handle both noises and multi-density data and yet is used to reduce the merging time of clustering. The algorithm is evaluated on various synthetic and real-world datasets using different quality metrics and further, scalability results are compared. The experimental results show that the proposed method in this study improves clustering quality in multi-density environments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Network and Computer Applications - Volume 59, January 2016, Pages 370-385
Journal: Journal of Network and Computer Applications - Volume 59, January 2016, Pages 370-385
نویسندگان
Amineh Amini, Hadi Saboohi, Tutut Herawan, Teh Ying Wah,