کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
688786 1460373 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault diagnosis of downhole drilling incidents using adaptive observers and statistical change detection
ترجمه فارسی عنوان
تشخیص گسل حوادث حفاری درون حفره با استفاده از ناظران تطبیقی ​​و تشخیص تغییرات آماری
کلمات کلیدی
تحت فشار حفاری، تشخیص گسل، تشخیص تغییرات آماری، ناظر سازگار، تنوع چند متغیره، تست نسبت احتمال کلی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تکنولوژی و شیمی فرآیندی
چکیده انگلیسی


• Efficient detection and isolation of emulated drilling incidents in test rig data.
• A combination of adaptive observer and change detection provides convincing results.
• Low false alarm probability yet high sensitivity obtained with multivariate GLRT.

Downhole abnormal incidents during oil and gas drilling cause costly delays, and may also potentially lead to dangerous scenarios. Different incidents will cause changes to different parts of the physics of the process. Estimating the changes in physical parameters, and correlating these with changes expected from various defects, can be used to diagnose faults while in development. This paper shows how estimated friction parameters and flow rates can be used to detect and isolate the type of incident, as well as isolating the position of a defect. Estimates are shown to be subjected to non-Gaussian, t-distributed noise, and a dedicated multivariate statistical change detection approach is used that detects and isolates faults by detecting simultaneous changes in estimated parameters and flow rates. The properties of the multivariate diagnosis method are analyzed, and it is shown how detection and false alarm probabilities are assessed and optimized using data-based learning to obtain thresholds for hypothesis testing. Data from a 1400 m horizontal flow loop is used to test the method, and successful diagnosis of the incidents drillstring washout (pipe leakage), lost circulation, gas influx, and drill bit nozzle plugging are demonstrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 30, June 2015, Pages 90–103
نویسندگان
, , , ,