کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
688965 889583 2014 14 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Progressive multi-block modelling for enhanced fault isolation in batch processes
ترجمه فارسی عنوان
مدل سازی چند بلوک پیشرفته برای جداسازی خطای افزایش در فرایندهای دسته ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
تشخیص گسل، نظارت بر فرآیند، فرآیندهای دسته ای، مدل سازی مترقی بر روی خط، چند بلوک روش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تکنولوژی و شیمی فرآیندی
چکیده انگلیسی


• A multi-block progressive modelling approach is proposed for enhanced fault isolation in batch processes.
• Through progressive modelling and contribution analysis, variables related to or affected by the fault, as well as the associated time information, are gradually identified.
• Fault propagation paths can be established through multi-block progressive modelling.

A multi-block progressive modelling approach is proposed for enhanced fault isolation in batch processes. The unfolding of batch data typically leads to matrices with a large number of columns and this complicates contribution analysis. In order to rapidly focus fault isolation in batch processes, it would be desirable to employ multi-block modelling techniques. Multi-block model such as consensus principal component analysis (CPCA) can produce multiple monitoring charts for sub-blocks and block loadings and block scores can be obtained which can represent unique behaviour of each sub-block. CPCA model uses super score which is the same as score from normal principal component analysis (PCA) model and it does not produce enhanced monitoring performance. Multi-block PCA (MBPCA) model using block score for model calculation can represent sub-blocks’ character but block scores are obtained from super loading so it may not be the best way to describe sub-blocks. A new MBPCA model is proposed for better expression of each sub-block. Through progressive modelling and contribution analysis, variables related to or affected by the fault, as well as the associated time information, are gradually identified. This enables a fault propagation path being established. The proposed method is applied to a benchmark simulated penicillin production process, PenSim.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 24, Issue 1, January 2014, Pages 13–26
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت