کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
689015 | 889585 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ILC strategy for progress improvement of economic performance in industrial model predictive control systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A novel approach to progress improvement of the economic performance in model predictive control (MPC) systems is developed. The conventional LQG based economic performance design provides an estimation which cannot be done by the controller while the proposed approach can develop the design performance achievable by the controller. Its optimal performance is achieved by solving economic performance design (EPD) problem and optimizing the MPC performance iteratively in contrast to the original EPD which has nonlinear LQG curve relationship. Based on the current operating data from MPC, EPD is transformed into a linear programming problem. With the iterative learning control (ILC) strategy, EPD is solved at each trial to update the tuning parameter and the designed condition; then MPC is conducted in the condition guided by EPD. The ILC strategy is proposed to adjust the tuning parameter based on the sensitivity analysis. The convergence of EPD by the proposed ILC has also been proved. The strategy can be applied to industry processes to keep enhancing the performance and to obtain the achievable optimal EPD. The performance of the proposed method is illustrated via an SISO numerical system as well as an MIMO industry process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 24, Issue 12, December 2014, Pages 107-118
Journal: Journal of Process Control - Volume 24, Issue 12, December 2014, Pages 107-118
نویسندگان
Xing Cai, Pei Sun, Junghui Chen, Lei Xie,