کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6896513 | 1445999 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A noisy principal component analysis for forward rate curves
ترجمه فارسی عنوان
یک مولفه مهم نویز سر و صدا برای منحنی های نرخ ارز پیش بینی شده است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
Principal Component Analysis (PCA) is the most common nonparametric method for estimating the volatility structure of Gaussian interest rate models. One major difficulty in the estimation of these models is the fact that forward rate curves are not directly observable from the market so that non-trivial observational errors arise in any statistical analysis. In this work, we point out that the classical PCA analysis is not suitable for estimating factors of forward rate curves due to the presence of measurement errors induced by market microstructure effects and numerical interpolation. Our analysis indicates that the PCA based on the long-run covariance matrix is capable to extract the true covariance structure of the forward rate curves in the presence of observational errors. Moreover, it provides a significant reduction in the pricing errors due to noisy data typically found in forward rate curves.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 246, Issue 1, 1 October 2015, Pages 140-153
Journal: European Journal of Operational Research - Volume 246, Issue 1, 1 October 2015, Pages 140-153
نویسندگان
Márcio Poletti Laurini, Alberto Ohashi,