| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 6903494 | 1446991 | 2018 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A local information based multi-objective evolutionary algorithm for community detection in complex networks
ترجمه فارسی عنوان
یک الگوریتم تکاملی چند منظوره مبتنی بر اطلاعات محلی برای تشخیص جامعه در شبکه های پیچیده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص جامعه، اطلاعات محلی، بهینه سازی چند هدفه، الگوریتم تکاملی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Due to the important role in analyzing the structure and function of complex networks, community detection has attracted increasing attention in the past years. Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in community detection and, in this paper, we continue this research line by further exploring the potential of MOEAs in detecting communities. To be specific, a local information based MOEA, termed LMOEA, is proposed for community detection, where an individual updating strategy is suggested to improve the quality of community detection. Considering that a network often contains some local communities which are easily detected in the early evolutions, the proposed strategy utilizes these local communities found by individuals to guide the search in the following generations. The effectiveness of the proposed LMOEA is verified by comparing it with several existing evolutionary algorithms for community detection on both synthetic and real-world networks. Experimental results demonstrate the competitiveness of the proposed LMOEA for community detection in complex networks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 69, August 2018, Pages 357-367
Journal: Applied Soft Computing - Volume 69, August 2018, Pages 357-367
نویسندگان
Fan Cheng, Tingting Cui, Yansen Su, Yunyun Niu, Xingyi Zhang,
