کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6904333 | 1447000 | 2017 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A grey artificial bee colony algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Artificial bee colony (ABC) algorithm is a very popular population-based algorithm. Unfortunately, there exists a shortcoming of slow convergence rate, which partly results from random choices of neighbor individuals regarding its solution search equation. A novel scheme for the choice of neighbors is introduced based on grey relational degrees between a current individual and its neighbors to overcome the insufficiency. Then, the chosen neighbor is used to guide the search process. Additionally, inspired by differential evolution, a solution search equation called ABC/rand/2 is employed to balance the previous exploitation and a new perturbation scheme is also employed. What is more, solution search equations using information of the best individual, an opposition-based learning method and a chaotic initialization technique are also integrated into the proposed algorithm called grey artificial bee colony algorithm (GABC for short). Subsequently, the effectiveness and efficiency of GABC are validated on a test suite composed of fifty-seven benchmark functions. Furthermore, it is also compared with a few state-of-the-art algorithms. The related experimental results show the effectiveness and superiority of GABC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 60, November 2017, Pages 1-17
Journal: Applied Soft Computing - Volume 60, November 2017, Pages 1-17
نویسندگان
Wan-li Xiang, Yin-zhen Li, Xue-lei Meng, Chun-min Zhang, Mei-qing An,