کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6929122 1449356 2018 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hidden physics models: Machine learning of nonlinear partial differential equations
ترجمه فارسی عنوان
مدل های فیزیک پنهان: یادگیری ماشین از معادلات دیفرانسیل غیر انتگرال جزئی
کلمات کلیدی
یادگیری ماشین احتمالی، شناسایی سیستم، مدل سازی بیزی، عدم قطعیت اندازه گیری، معادلات جزئی. داده های کوچک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 357, 15 March 2018, Pages 125-141
نویسندگان
, ,