کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6933675 | 867752 | 2013 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes
ترجمه فارسی عنوان
یک طرح کوچک و استثنایی برای محافظت در برابر انزوا گرایی در مشهای دو بعدی و سه بعدی دلخواه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
انتشار بی نظیر، نقطه مرکزی هارمونی، اصل افراطی گسسته، معیار حفظ خطی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In this paper a nonlinear extremum-preserving scheme for the heterogeneous and anisotropic diffusion problems is proposed on general 2D and 3D meshes through a certain linearity-preserving approach. The so-called harmonic averaging points located at the interface of heterogeneity are employed to define the auxiliary unknowns. This new scheme is locally conservative, has only cell-centered unknowns and possesses a small stencil, which is five-point on the structured quadrilateral meshes and seven-point on the structured hexahedral meshes. The stability result in H1 norm is obtained under quite general assumptions. Numerical results show that our scheme is robust and extremum-preserving, and the optimal convergence rates are verified on general distorted meshes in case that the diffusion tensor is taken to be anisotropic, at times discontinuous.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 250, 1 October 2013, Pages 308-331
Journal: Journal of Computational Physics - Volume 250, 1 October 2013, Pages 308-331
نویسندگان
Zhiming Gao, Jiming Wu,