کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6937485 1449738 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A study of the effect of noise and occlusion on the accuracy of convolutional neural networks applied to 3D object recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A study of the effect of noise and occlusion on the accuracy of convolutional neural networks applied to 3D object recognition
چکیده انگلیسی
In this work, we carry out a study of the effect of adverse conditions, which characterize real-world scenes, on the accuracy of a Convolutional Neural Network applied to 3D object class recognition. Firstly, we discuss possible ways of representing 3D data to feed the network. In addition, we propose a set of representations to be tested. Those representations consist of a grid-like structure (fixed and adaptive) and a measure for the occupancy of each cell of the grid (binary and normalized point density). After that, we propose and implement a Convolutional Neural Network for 3D object recognition using Caffe. At last, we carry out an in-depth study of the performance of the network over a 3D CAD model dataset, the Princeton ModelNet project, synthetically simulating occlusions and noise models featured by common RGB-D sensors. The results show that the volumetric representations for 3D data play a key role on the recognition process and Convolutional Neural Network can be considerably robust to noise and occlusions if a proper representation is chosen.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 164, November 2017, Pages 124-134
نویسندگان
, , , , , ,