| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 6937714 | 1449833 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Patch-based face recognition using a hierarchical multi-label matcher
ترجمه فارسی عنوان
شناسایی چهره مبتنی بر پچ با استفاده از چندین الگوریتم سلسله مراتبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص چهره، شبکه عصبی متقاطع، طبقه بندی چند سلولی سلسله مراتبی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
This paper proposes a hierarchical multi-label matcher for patch-based face recognition. In signature generation, a face image is iteratively divided into multi-level patches. Two different types of patch divisions and signatures are introduced for 2D facial image and texture-lifted image, respectively. The matcher training consists of three steps. First, local classifiers are built to learn the local matching of each patch. Second, the hierarchical relationships defined between local patches are used to learn the global matching of each patch. Three ways are introduced to learn the global matching: majority voting, â1-regularized weighting, and decision rule. Last, the global matchings of different levels are combined as the final matching. Experimental results on different face recognition tasks demonstrate the effectiveness of the proposed matcher at the cost of gallery generalization. Compared with the UR2D system, the proposed matcher improves the Rank-1 accuracy significantly by 3% and 0.18% on the UHDB31 dataset and IJB-A dataset, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 73, May 2018, Pages 28-39
Journal: Image and Vision Computing - Volume 73, May 2018, Pages 28-39
نویسندگان
L. Zhang, P. Dou, I.A. Kakadiaris,
