کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6937851 | 1449889 | 2019 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximate computational approaches for Bayesian sensor placement in high dimensions
ترجمه فارسی عنوان
رویکردهای محاسباتی تقریبی برای قرار دادن سنسور بیزی در ابعاد بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اطلاعات متقابل، استنتاج بیزی، تجزیه و تحلیل همبستگی کانونی، بهینه سازی بیزی، طرح ریزی کم
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Since the cost of installing and maintaining sensors is usually high, sensor locations should always be strategically selected to extract most of the information. For inferring certain quantities of interest (QoIs) using sensor data, it is desirable to explore the dependency between observables and QoIs to identify optimal placement of sensors. Mutual information is a popular dependency measure, however, its estimation in high dimensions is challenging as it requires a large number of samples. This also comes at a significant computational cost when samples are obtained by simulating complex physics-based models. Similarly, identifying the optimal design/location requires a large number of mutual information evaluations to explore a continuous design space. To address these challenges, two novel approaches are proposed. First, instead of estimating mutual information in high-dimensions, we map the limited number of samples onto a lower dimensional space while capturing dependencies between the QoIs and observables. We then estimate a lower bound of the original mutual information in this low dimensional space, which becomes our new dependence measure between QoIs and observables. Second, we use Bayesian optimization to search for optimal sensor locations in a continuous design space while reducing the number of lower bound evaluations. Numerical results on both synthetic and real data are provided to compare the performance of the lower bound with the estimate of mutual information in high dimensions, and a puff-based dispersion model is used to evaluate the sensor placement of the Bayesian optimization for a chemical release problem. The results show that the proposed approaches are both effective and efficient in capturing dependencies and inferring the QoIs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 46, March 2019, Pages 193-205
Journal: Information Fusion - Volume 46, March 2019, Pages 193-205
نویسندگان
Xiao Lin, Asif Chowdhury, Xiaofan Wang, Gabriel Terejanu,