کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6938496 | 869578 | 2016 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convolutional neural network based deep conditional random fields for stereo matching
ترجمه فارسی عنوان
زمینه های تصادفی شرطی عمیق متعارف برای تطبیق استریو با استفاده از شبکه عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تطبیق استریو، زمینه های تصادفی محض، شبکه عصبی متقاطع،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Stereo matching has been studied for many years and is still a challenge problem. The Markov Random Fields (MRF) model and the Conditional Random Fields (CRF) model based methods have achieved good performance recently. Based on these pioneer works, a deep conditional random fields based stereo matching algorithm is proposed in this paper, which draws a connection between the Convolutional Neural Network (CNN) and CRF. The object knowledge is used as a soft constraint, which can effectively improve the depth estimation accuracy. Moreover, we proposed a CNN potential function that learns the potentials of CRF in a CNN framework. The inference of the CRF model is formulated as a Recurrent Neural Network (RNN). A variety of experiments have been conducted on KITTI and Middlebury benchmark. The results show that the proposed algorithm can produce state-of-the-art results and outperform other MRF-based or CRF-based methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 739-750
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 739-750
نویسندگان
Zhi Wang, Shiqiang Zhu, Yuehua Li, Zhengzhe Cui,