کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940020 | 869886 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
One-pass online learning: A local approach
ترجمه فارسی عنوان
آموزش آنلاین در یک مرحله: رویکرد محلی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
آموزش آنلاین یک نفره، مدل سازی محلی، طبقه بندی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Online learning is very important for processing sequential data and helps alleviate the computation burden on large scale data as well. Especially, one-pass online learning is to predict a new coming sample׳s label and update the model based on the prediction, where each coming sample is used only once and never stored. So far, existing one-pass online learning methods are globally modeled and do not take the local structure of the data distribution into consideration, which is a significant factor of handling the nonlinear data separation case. In this work, we propose a local online learning (LOL) method, a multiple hyperplane Passive Aggressive algorithm integrated with online clustering, so that all local hyperplanes are learned jointly and working cooperatively. This is achieved by formulating a common component as information traffic among multiple hyperplanes in LOL. A joint optimization algorithm is proposed and theoretical analysis on the cumulative error is also provided. Extensive experiments on 11 datasets show that LOL can learn a nonlinear decision boundary, overall achieving notably better performance without using any kernel modeling and second order modeling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 51, March 2016, Pages 346-357
Journal: Pattern Recognition - Volume 51, March 2016, Pages 346-357
نویسندگان
Zhaoze Zhou, Wei-Shi Zheng, Jian-Fang Hu, Yong Xu, Jane You,