کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6941504 | 1450113 | 2018 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
New semi-supervised classification using a multi-modal feature joint L21-norm based sparse representation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a novel semi-supervised classification method, namely sparse semi-supervised classification algorithm (SSSC) is proposed. To improve the reliability of SSSC, this study extends SSSC to multi-modal features joint L21ânorm based sparse representation. In the SSSC framework, the labeled patterns are sparsely represented by the abundance of unlabeled patterns, and then the scores of the unlabeled patterns are computed corresponding to the object class based on the relational degree vector. A quality measure is also presented to divide the unlabeled patterns into reliable and unreliable relabeled patterns. The reliable relabeled patterns are selected to be added into the labeled data for learning the labels of the unreliable relabeled data recurrently. Experimental results clearly demonstrate that the proposed method outperforms the state-of-the-art classification methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 65, July 2018, Pages 94-106
Journal: Signal Processing: Image Communication - Volume 65, July 2018, Pages 94-106
نویسندگان
Yan Cui, Jielin Jiang, Zhihui Lai, Zuojin Hu, Yuquan Jiang, WaiKeung Wong,