کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6941618 | 1450116 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast CU size decision algorithm using machine learning for HEVC intra coding
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
High Efficiency Video Coding (HEVC) is a state-of-the-art video compression standard which improves coding efficiency significantly compared with the previous coding standard, H.264/AVC. In the HEVC standard, novel technologies consuming massive computational power are adopted, such as quad-tree-based coding unit (CU) partitioning. Although an HEVC encoder can efficiently compress various video sequences, the computational complexity of an exhaustive search has become a critical problem in HEVC encoder implementation. In this paper, we propose a fast algorithm for the CU partitioning process of the HEVC encoder using machine learning methods. A complexity measure based on the Sobel operator and rate-distortion costs are defined as features for our algorithm. A CU size can be determined early by employing Fisher's linear discriminant analysis and the k-nearest neighbors classifier. The statistical data used for the proposed algorithm is updated by adaptive online learning phase. The experimental results show that the proposed algorithm can reduce encoding time by approximately 54.0% with a 0.68% Bjøntegaard-Delta bit-rate increase.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 62, March 2018, Pages 33-41
Journal: Signal Processing: Image Communication - Volume 62, March 2018, Pages 33-41
نویسندگان
Dokyung Lee, Jechang Jeong,