کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6941834 | 870801 | 2016 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel framework method for non-blind deconvolution using subspace images priors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Non-blind deconvolution has been an active challenge in the research fields of computer vision and computational photography. However, most existing deblurring methods conduct direct deconvolution only on the degraded image and are sensitive to noise. To enhance the performance of non-blind deconvolution, we propose a novel framework method by exploiting different sparse priors of subspace images. In the proposed framework, three effective filters are firstly designed to decompose a degraded image into the measurements of different subspace images. Then, existing deblurring techniques are employed to deblur different blurred subspace images respectively. Finally, the least square integration method is utilized to recover the ideal image by integrating the deblurred estimates of subspace images with the degraded image. The proposed framework is more general and can be easily extended to existing deblurring methods. The conducted experiments have validated the effectiveness of the proposed framework, and have demonstrated that the proposed method outperforms other state-of-the-art methods in both preserving image structures and suppressing noise.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 46, August 2016, Pages 17-28
Journal: Signal Processing: Image Communication - Volume 46, August 2016, Pages 17-28
نویسندگان
Peixian Zhuang, Xueyang Fu, Yue Huang, Delu Zeng, Xinghao Ding,