کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6951362 | 1451662 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement
ترجمه فارسی عنوان
دقت طبقه بندی به رسمیت شناختن الگوریتم بهبود یافته برای سیگنال های مایوالکتریک سطح با استفاده از افزایش طیفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, we demonstrate that spectral enhancement techniques can be configured to improve the classification accuracy of a pattern recognition-based myoelectric control system. This is based on the observation that, when the subject is at rest, the power in EMG recordings drops to levels characteristic of the noise. Two Minimum Statistics techniques, which were developed for speech processing, are compared against electromyographic (EMG) de-noising methods such as wavelets and Empirical Mode Decomposition. In the cases of simulated EMG signals contaminated with white noise and for real EMG signals with added and intrinsic noise the gesture classification accuracy was shown to increase. The mean improvement in the classification accuracy is greatest when Improved Minima-Controlled Recursive Averaging (IMCRA)-based spectral enhancement is applied, thus demonstrating the potential of spectral enhancement techniques for improving the performance of pattern recognition-based myoelectric control.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 18, April 2015, Pages 61-68
Journal: Biomedical Signal Processing and Control - Volume 18, April 2015, Pages 61-68
نویسندگان
Paul McCool, Lykourgos Petropoulakis, John J. Soraghan, Navin Chatlani,