کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951409 1451662 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
ترجمه فارسی عنوان
تشخیص مستقل از میزان فیبریلاسیون دهلیزی با استفاده از مدل آماری فعالیت های دهلیزی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In this study, we propose a P-wave absence (PWA) based method for atrial fibrillation (AF) identification over a short duration of electrocardiogram (ECG). The algorithm constructs a statistical model of normal sinus rhythm (SR) P-waves using a training set. Features extracted from P-waves are taken as an input to the Expectation-Maximization algorithm to create a Gaussian mixture model (GMM) of the P-wave feature space. The model is then used to identify PWA and detect AF. The algorithm performs AF identification in a single beat, and through post-processing of successive outputs using a majority voter determines the PWA over seven beats. The MIT-BIH Atrial Fibrillation Database was used to evaluate the algorithm. Classification using the majority voter showed a sensitivity of 98.09%, a specificity of 91.66%, a positive predictive value of 79.17% and an error of 6.88%. The performance of the proposed classifier is comparable to current R-R interval (RRI)-based algorithms, yet is able to detect short episodes of AF and performs rate-independent AF determination. The proposed algorithm targets atrial activity rather than ventricular activity that is targeted in RRI-based algorithms. It provides a patient specific detection of AF using a simple classifier, and can be leveraged as a tool to detect AF onsets/offsets over short AF episodes even when a patient's heart rate is controlled.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 18, April 2015, Pages 274-281
نویسندگان
, ,