کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951805 1451704 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Collaborative representation based local discriminant projection for feature extraction
ترجمه فارسی عنوان
ارائه نمایندگی مشترک بر اساس طرح ریزی محلی برای استخراج ویژگی است
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
This paper introduces a novel dimensionality reduction algorithm, called collaborative representation based local discriminant projection (CRLDP), for feature extraction. CRLDP utilizes collaborative representation relationships among samples to construct adjacency graphs. Different from most graph-based algorithms which manually construct the adjacency graphs, CRLDP is able to automatically construct the graphs and avoid manually choosing nearest neighbors. In CRLDP, two graphs (the within-class graph and the between-class graph) are constructed. Based on the two constructed graphs, the within-class scatter and the between-class scatter are computed to characterize the compactness and separability of samples, respectively. Then CRLDP seeks to find an optimal projection matrix to maximize the ratio of the between-class scatter to the within-class scatter. Experimental results on ORL, AR and CMU PIE face databases validate the superiority of CRLDP over other state-of-the-art algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 76, May 2018, Pages 84-93
نویسندگان
, , , , ,