کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6951805 | 1451704 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Collaborative representation based local discriminant projection for feature extraction
ترجمه فارسی عنوان
ارائه نمایندگی مشترک بر اساس طرح ریزی محلی برای استخراج ویژگی است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استخراج ویژگی، ساخت گراف، یادگیری منیفولد، نمایندگی همکاری، تشخیص چهره،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This paper introduces a novel dimensionality reduction algorithm, called collaborative representation based local discriminant projection (CRLDP), for feature extraction. CRLDP utilizes collaborative representation relationships among samples to construct adjacency graphs. Different from most graph-based algorithms which manually construct the adjacency graphs, CRLDP is able to automatically construct the graphs and avoid manually choosing nearest neighbors. In CRLDP, two graphs (the within-class graph and the between-class graph) are constructed. Based on the two constructed graphs, the within-class scatter and the between-class scatter are computed to characterize the compactness and separability of samples, respectively. Then CRLDP seeks to find an optimal projection matrix to maximize the ratio of the between-class scatter to the within-class scatter. Experimental results on ORL, AR and CMU PIE face databases validate the superiority of CRLDP over other state-of-the-art algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 76, May 2018, Pages 84-93
Journal: Digital Signal Processing - Volume 76, May 2018, Pages 84-93
نویسندگان
Pu Huang, Tao Li, Guangwei Gao, Yazhou Yao, Geng Yang,