کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952171 | 1451755 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive filtering of EEG/ERP through Bounded Range Artificial Bee Colony (BR-ABC) algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the Artificial Bee Colony (ABC) algorithm is applied to construct Adaptive Noise Canceller (ANC) for electroencephalogram (EEG)/Event Related Potential (ERP) filtering with modified range selection, described as Bounded Range ABC (BR-ABC). ERP generated due to hand movement is filtered through Adaptive Noise Canceller (ANC) from the EEG signals. ANCs are also implemented with Least Mean Square (LMS) and Recursive Least Square (RLS) algorithm. Performance of the algorithms is evaluated in terms of Signal-to-Noise Ratio (SNR) in dB, correlation between resultant and template ERP, and mean value difference. Testing of their noise attenuation capability is done on contaminated ERP with white noise at different SNR levels. A comparative study of the performance of conventional gradient based methods like LMS, RLS, and ABC algorithm is also made which reveals that ABC algorithm gives better performance in highly noisy environment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 25, February 2014, Pages 164-172
Journal: Digital Signal Processing - Volume 25, February 2014, Pages 164-172
نویسندگان
M.K. Ahirwal, A. Kumar, G.K. Singh,