کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6956229 1451868 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems
ترجمه فارسی عنوان
شتاب حالت عمومی و روش های تقویت کوتاه مدت برای تجزیه و تحلیل پاسخ هارمونیک از سیستم های غیر قابل نفوذ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
The modal truncation problem is frequently encountered in nonviscously (viscoelastically) damped systems since only the modes of interest are usually considered in the dynamic analysis of engineering problems. This study aims at accurately calculating the steady-state responses of nonviscously damped systems by only considering the modes of interest. Based on the Neumann expansion theorem and the frequency shifting technique, a property obtained from the first-order terms of the Neumann expansion of the frequency response function (FRF) matrix of nonviscously damped systems is given. However, this procedure cannot be extended to consider the further higher-order terms. It means a truncation expansion problem exists for nonviscously damped systems. By considering the first-order terms of the Neumann expansion, a generalized mode acceleration method (GMAM) is presented to handle the modal truncation problem. The GMAM can overcome the singular problem of the stiffness matrix. The modal truncation augmentation method (MTAM) is also presented to handle the modal truncation problem by making the equilibrium equations into a subspace equation spanned in terms of the columns of a projection basis given in the GMAM. Several conclusions concerning the implementation of the presented methods are formulated on the basis of the results of three examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 52–53, February 2015, Pages 46-59
نویسندگان
, ,