کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6961890 | 1452242 | 2018 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A comparison of methods for discretizing continuous variables in Bayesian Networks
ترجمه فارسی عنوان
مقایسه روش های گسسته سازی متغیرهای پیوسته در شبکه های بیزی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
Bayesian Networks (BNs) are an increasingly popular method for modelling environmental systems. The discretization of continuous variables is often required to use BNs. There are three main methods of discretization; manual, unsupervised, and supervised. Here, we compare and demonstrate each approach with a BN that predicts coastal erosion. Results reveal that supervised discretization methods produced BNs of the highest average predictive skill (73.8%), followed by manual discretization (69.0%) and unsupervised discretization (64.8%). However, each method has specific advantages that may make them more suitable for particular applications. Manual methods can produce physical meaningful BNs, which is favorable in environmental modelling. Supervised methods can autonomously and optimally discretize variables and may be preferred when predictive skill is a modelling priority. Unsupervised methods are computationally simple and versatile. The optimal discretization scheme should consider both the performance and practicality of the scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 108, October 2018, Pages 61-66
Journal: Environmental Modelling & Software - Volume 108, October 2018, Pages 61-66
نویسندگان
Tomas Beuzen, Lucy Marshall, Kristen D. Splinter,