کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6961918 1452243 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A non-parametric bootstrapping framework embedded in a toolkit for assessing water quality model performance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
A non-parametric bootstrapping framework embedded in a toolkit for assessing water quality model performance
چکیده انگلیسی
Assessing the ability to predict nutrient concentration in streams is important for determining compliance with the Numeric Nutrient Water Quality Criteria for Nitrogen in the U.S.A. Evaluation of the USGS's Load Estimator (LOADEST) and the Weighted Regression on Time, Discharge, and Season (WRTDS) models in predicting total nitrogen loads over 18 stations from the Water Quality Network show good performance (Nash-Sutcliffe Efficiency (NSE) > 0.8) in capturing the observed variability even for stations with limited data. However, both models captured only 40% of observed variance in total nitrogen (TN) concentration (NSE < 0.4). Thus, the same dataset performed differently in predicting two attributes - TN load and concentration - questioning the predictive skill of the models. This study proposes a non-parametric re-sampling approach for assessing the performance of water quality models particularly in predicting TN concentration. Null distributions for three common performance metrics belonging to populations of metrics with no skill in capturing the observed variability are constructed through a bootstrap resampling technique. Sample metrics from the LOADEST and WRTDS model in predicting TN concentration are used to calculate p-values for determining if the sample metrics belongs to the null distributions. .
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 107, September 2018, Pages 25-33
نویسندگان
, , , ,